Residual-driven online generalized multiscale finite element methods

نویسندگان

  • Eric T. Chung
  • Yalchin Efendiev
  • Wing Tat Leung
چکیده

The construction of local reduced-order models via multiscale basis functions has been an area of active research. In this paper, we propose online multiscale basis functions which are constructed using the offline space and the current residual. Online multiscale basis functions are constructed adaptively in some selected regions based on our error indicators. We derive an error estimator which shows that one needs to have an offline space with certain properties to guarantee that additional online multiscale basis function will decrease the error. This error decrease is independent of physical parameters, such as the contrast and multiple scales in the problem. The offline spaces are constructed using Generalized Multiscale Finite Element Methods (GMsFEM). We show that if one chooses a sufficient number of offline basis functions, one can guarantee that additional online multiscale basis functions will reduce the error independent of contrast. We note that the construction of online basis functions is motivated by the fact that the offline space construction does not take into account distant effects. Using the residual information, we can incorporate the distant information provided the offline approximation satisfies certain properties. In the paper, theoretical and numerical results are presented. Our numerical results show that if the offline space is sufficiently large (in terms of the dimension) such that the coarse space contains all multiscale spectral basis functions that correspond to small eigenvalues, then the error reduction by adding online multiscale basis function is independent of the contrast. We discuss various ways computing online multiscale basis functions which include a use of small dimensional offline spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cluster-based Generalized Multiscale Finite Element Method for elliptic PDEs with random coefficients

We propose a generalized multiscale finite element method (GMsFEM) based on clustering algorithm to study the elliptic PDEs with random coefficients in the multiquery setting. Our method consists of offline and online stages. In the offline stage, we construct a small number of reduced basis functions within each coarse grid block, which can then be used to approximate the multiscale finite ele...

متن کامل

Generalized Multiscale Finite Element Methods (GMsFEM)

Article history: Received 8 September 2012 Received in revised form 18 April 2013 Accepted 24 April 2013 Available online 22 May 2013

متن کامل

Adaptive multiscale model reduction with Generalized Multiscale Finite Element Methods

In this paper, we discuss a general multiscale model reduction framework based on multiscale finite element methods. We give a brief overview of related multiscale methods. Due to page limitations, the overview focuses on a few related methods and is not intended to be comprehensive. We present a general adaptive multiscale model reduction framework, the Generalized Multiscale Finite Element Me...

متن کامل

A Variational Multiscale Stabilized Finite Element Method for Stochastic Advection-Diffusion and Stochastic Incompress- ible Flow

An extension of the deterministic variational multiscale (VMS) approach with algebraic subgrid scale (SGS) modeling is considered for developing stabilized finite element formulations for the linear stochastic scalar advection-diffusion equation and the incompressible stochastic Navier-Stokes equations. The stabilized formulations are numerically implemented using the spectral stochastic formul...

متن کامل

An Adaptive Finite Element Heterogeneous Multiscale Method for Stokes Flow in Porous Media

A finite element heterogeneous multiscale method is proposed for solving the Stokes problem in porous media. The method is based on the coupling of an effective Darcy equation on a macroscopic mesh, with unknown permeabilities recovered from micro finite element calculations for Stokes problems on sampling domains centered at quadrature points in each macro element. The numerical method account...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 302  شماره 

صفحات  -

تاریخ انتشار 2015